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Abstract This paper addresses parameter drift in stochastic models. We define a notion of context

that represents invariant, stable-over-time behavior and we then propose an algorithm for detecting

contexti changes in processing a stream of data. A context change is seen as model failure, when a

probabilistic model representing current behavior is no longer able to “fit” newly encountered data.
We specify our stochastic models using a first-order logic-based probabilistic modeling language called
Generalized Loopy Logic {GLL). An important component of GLL is its learning mechanism that can

identify context drift. We demonstrate how our algorithm can be incorporated into a failure-driven

context-switching probabilistic modeling framework and offer several examples of its application.
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1 Context-Based Diagnostics

In real-time diagnosis, where observations are
given as a data stream, reasoning often has to
be performed under strict time constraints with
limited amounts of data awvailable at each time
step. This diagnostic problem can be simplified by
a context-based approach where the data stream
is partitioned into stable regions {(contexts) and
a separate model is built for each context. The

complexity of a model representing stable behav-

ior under a context is.often considerably reduced
since most of the contextually irrelevant informa-
tion is left out during modeling. Reduced models
often require less training data. In this paper we
define the notion of context capturing stable data
patterns and propose an algorithm for detecting
when these contextual patterns change. A context
change is identified by model failure when the cur-
rent model no longer fits the incoming data. Our
representation is based on a first-order logic-based
probabilistic modeling language that combines the
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power of first-order logic with the ability to handle
uncertainty and noise.

Using a compact logic-based representation
supports knowledge-based model construction
(KBMC)[l] that represents general knowledge ex-
pressed as first-order rules in a specific, contextu-
ally relevant probabilistic model. As opposed to
using probabilistic graphical models directly, ap-
plying logic-based represemtations facilitates sys-
tems diagnosis, since logical rules provide a bird’s
eye view of a graphical model (built using KBMC)
masking some complexity out.

Probabilistic modeling systems that dynami-
cally represent changing data are important for
carrying out complex diagnostic reasoning tasks.
With the increasing use of rermote sensing technol-
ogy continuously and concurrently collecting large
sets of data, it becomes more necessary to de-
velop a methodology for processing noisy data in a
timely manner. Since modern sensing systems are
often supported by very large sensor networks, the
standard approach of collecting and processing all
data at a central location is rarely efficient and it
hecomes necessary to shift aspects of the compu-
tation to the sensors where the data are collected.
This introduces additional constraints on the run-
ning time and memory of the modeling system.
The most suitable systems in these cases, we be-
lieve, are those that are able to evolve to handle
rapidly changing pieces of information. There is
a limitation, however, that makes current proba-
bilistic modeling unable to support this evolution:
many approaches assume that modeling is dome
only once and that the entire dataset is available
ahead of time. In this paper we define contert and
introduce fatlure-driven contert-switching proba-

bilistic modeling that incorporates ideas from de-
velopmental learning, including assimilation and
accommodationm, to model streams of data from
dynamic environments.

In Section 2 we overview related research. In
Section 3 we give a definition of context and de-
scribe the context-sensitive modeling problem un-
derlying this research. In Section 4 we describe
generalized loopy logic (GLL), a first~order logic-
based reasoning language we employ to specify
contextual models and to perform inferencing over
them. In Section 5 we propose an iterative algo-
rithm for online detection of context transitions.
In Section 6 we show how our context detection
algorithm can be incorporated ag a component of a
larger context-sensitive modeling gystem and pro-
vide several examples. Finally, in Section 7 we give

ideas for future research and conclude.

2 Related Research

Logic-based representations for stochastic mod-
eling have been proposed by a number of re-
searchers. Poolels] was one of the first to develop
an approximate inference algorithm for a Turing
complete probabilistic logic language where uncer-
tainty is expressed through sets of mutually exclu-
sive predicates annotated with probabilities. Al-
though successful at employing probability to han-
dle uncertainty and noise in logic-programs, ap-
plications maintaining the correct normalization
across the rules can be complicated and is left o
the user. Haddawy created a first-order prob-
abilistic logic that he used to specify a static
class of (propositional) Bayesian networks (BNs)
as a knowledge base. Haddawy proposed a prov-
ably correct Bayesian network generation algo-
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rithm that was later adapted to focus the knowl-
edge base on the relevant information® 6. The
approach in [5] is one of the first attempts to ex-
plicitly use contextual information in probabilistic
modeling. Their logic-baged stochastic modeling
approach utilizes context as a way to reduce the
size of a model.

We see the methods of Haddawy[41, Ngo
and Haddawy[sl, and Ngo et allfl as exammples
of knowledge-based model construction (KBMC)
that uses a query to project a general knowl-
edge base down to a particular model sufficient
to answer the query. The work by Glegner and
Koller!] is also largely based on the idea of KBMC.
Their approach extends [4] to the temporal case by
adding a time argument to the predicates and sub-
sequently mapping the temporal knowledge base
to a dynamic Bayesian network. Like Haddawy[ L,
Glesner and Koller attempt to focus the knowledge
base to the relevant information by representing
a conditional probability table as a decision tree
which is invoked dwring the model comstruction
step in order to decrease the size of the resulting
model.

PRISM®! and its later extensionsi® offer an-
other method for statistical parameter learning on
logic programs represented as a set of Horn clauses.
In PRISM, a parameterized program expresses dis-
tributions over the set of all possible truth assign-
ments to ground atoms provable from the program.
Thus, facts in PRISM programs are probabilis-
tically frue, while other formulas representing if-
then laws are always true. Sato and I<Iamu3ya[8I set
up a statistical abduction framework where special
atoms expressing a probabilistic switch between fi-

nite alternatives are abducibles from which expla-

nations are constructed as conjunctions. PRISM
attempts to get around combinatorial problems by
constraining the allowed programs to guarantee
that the forrmuila describing all proofs of a query
is a combination of disjoint products, which is lim-
iting for non-context-free gramrars. LF're:anI_rog[10J
extends PRISM by attaching probabilistic labels
to all clauses (not just to ground facts) and conse-
quently handling the situation when several facts
are simultaneously true. Labels in ProbLog refer
to the probebility that the corresponding clauses
are true, and these probabilities are mutually in-

dependent.

Friedman et al.ll1] and, later, Getoor et al.l12)
proposed probabilistic relational models (PRMs)
that differ from other approaches[g” 13, 14 by
gpecifying a probability model using classes of ob-
jects rather than simple attributes. For exam-
ple, an explicitly identified relational structure of
PRMs {similar to relational DBs) supports prob-
abilistic dependencies between attributes of re-
lated objects. PRMs(}: 12} yse maximum likeli-
hood parameter estimation for parameter learning,
while structure learning is done through a heuristic
search of the best scores in a hypothesis space.

Bayesian logic programs (BLPs) is another
knowledge-based model construction approach
proposed in [13]. 'This framework generates
Bayesian networks specific for given queries using a
set of first-order Prolog-like rules with uncertainty
parameters. Kersting and DeRaedt3] represent
a Horn clause as a probability formula such that
a Hom clause head is conditioned on the body.
The conditional probability distribution quantify-
ing this relation is attached to the formula.

A recent approach called Bayesian knowledge
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base (BKB)[15I extends the logic-based probabilis-
tic reasoning to a temporal domain. BKBs can be
seen as an extension of BLPs for handling differ-
ent cyclic and recursive structures and incorporat-
ing logical context. Similarly to BLPs, BKBs are
mapped to Bayesian networks, however if there are
cyclic relationships then BKBs are mapped to two-

slice stationary dynamic Bayesian networks.

Another approach called relational dynamic
Bayesian networks (RDBNs) extends Bayesian
networks (in this case dynamical) to relational
domains1€l. In this work Sanghai et al. take
first-order formrlas extended to perform various
aggregation (such as coumt) and combine them
with conditional probability tables represented as
first-order probability trees {probability estima-
tion trees extended to the first-order case). This
approach can be seen -as-an extension of a deci-
sion tree representation for CPTs proposed by [7].
RDBNg aim at state estimation in temporal do-

mains and employ particle filtering for inference.

As opposed to earlier approaches, such as
BLPs, that are based on restricted logic sub-
sets (Horn clauses), Richardson and Domhzgos[M]
propose Markov logic networks (MLNs) that use
general first-order logic.  This approach con-
verts logic sentences into a conjunctive nor-
mal form (CNF) which is then mapped onto
Markov random fields for inference. Kersting and
DeRaedt{13], Ngo and Haddawy[5], and various
other approachesw’ 16, 1] propose using Bayesian

Networks for inference.

In this paper, we choose a significantly differ-
ent direction than the approach of Richardson
and Domingos[ml uging both domain-dependent
and query-dependent model construction. Even

though mapping from the CNF sentences of MLNs
to Markov fields is straightforward, the practical
advantages over Horn-clause-based representations
are not obvious: we argue that Horn clauses pro-
vide modeling power by preserving the expressiv-
ity and at the same time supporting the embed-
ding of various heuristics. We use a stochastic lan-
guage, called Generalized Loopy Logic (GLL), de-
scribed in detail in section 4, that combines Horn
clauses with BNs similarly to BLPs13l. As op-
posed to BLPs, GLL uses Markov networks for
inference that naturally handles the product dis-
tribution combining rule and adds EM-based pa-

rameter learning (see section 4.2).

Although our research is motivated by [4, 5],
their contextual mechanism cannoct refiect all the
complexity of the internal structures of data. Ngo
and Haddawy define a comtext of a rule (& Horn
clause) specified as a conjunction of logic predi-
cates that are evaluated by a contextual logic pro-
gram. Shen(*?! followed & similar direction and
extended each first-order rule representing a rela-
tion with predicates describing context. His ap-
proach integrates contextual constrains together
with a logical program describing relations in a
domain, as opposed to [5] where context and the
logical knowledge base are evaluated disjointly. A
number of other approaches use context indirectly
defined through conditional independences[w’ 18
or through decision trees(” 16] to refine the models

and improve their performance.

In this paper, we create a more general context
for a model as opposed to assigning contextual con-
straints to each rule independently. We provide
a formal specification of context as truth assign-
ments to a specific set of variables that we know
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about. The choice of variables is similar to the
approach of Pearl?9 and Halpern and Pear] 201
that uses exogenous variables (that are not in the
model) to identify a background for the possible
causes of an event. Other stochastic logic-based
methods can be seen as examples of knowledge-
intensive modeling, however they assume that all
the data are given at the start of problem solving,
and thus cannot be applied efficiently to domains
with distinet confextual changes.

In our paper, the definition of context (next sec-
tion) describes the framework for tracking concept
drift and identifying context change.

3 Specifications for Context Modeling

‘We next introduce the general problem of learn-
ing with context-sensitive probabilistic models by
first introducing a formal notation. Italic upper-
case letters (X, YV,Z) denote variables, and italic
lowercase letters (z, y, z) represent their instanti-
ated values. Similarly, bold uppercase letters (X,
Y, Z) represent sets of variables, and bold lower-
case letters (x, y, z) denote their instantiations.

The probability distribution of a set of vari-
ables X is denoted with Pr{X) whose elements
are Pr{x). For example, using this notation we can
write 3, Pr(x) = 1. Similarly, Pr(X | Y) denotes
the conditional probability of X given Y, which is
a table of probability distributions indexed by the
instantiations of Y: every Pr(X | y) is a proba~
bility distribution over X, each element of which
is depicted by Pr{x | y).

Selected features of knowledge and beliefs about
a domalin are encoded in a model, which is a par-
tial view of total information about the domain.

We use probebilistic graphical modelsY) as suit-

able representations for a model.

Definition 3.1. Given a (universal) set of vari-
ables'V, a model M imposed on'U C 'V is g graph-
ical model defined on U. Similer to Halpern and
Pea,rl[goj, the variables in U are called endogenous
variables, given M, and denoted as En(AM). All
the variables that are not in M are colled exoge-
nous variables and denoted as Ex(M). Formally,
we have Ex(M) = V — En(M). Recall that M
has a structural component, a graph G, and a
parametric component, a set of probability distri-

butions © 4.

Definition 3.2. A conjunction.of truth assign-
ments to some erogenous variables of a model M
is called a context C of M: C =V A ... AV,
where {V1,...,Vp} C Ex(M). Note that to make
the definitions simpler, we assumed that ell vari-
ables of our models are boolean; this can be relaved
by using generol variable assertions instead of truth

assignments.

The idea of a context is to capture the stable in-
variant behavior of the specified set of exogenous
variables of a model: assuming the model fits a
data set well, its context logically holds under the
available data. Consider a domain in which a sys-
tem goes through a set of operational contexts over
time. One possible modeling approach is to build
a single large probabilistic graphical model that
wilt account for different situations corresponding
to various system states. This approach suffers
from high data requirements and low time/space
efficiency due to high complexity of the model. An-
other possible method is to represent the system
with many tiny models that hold for a limited pe-
riod of time (due to noise in the data)., Although
this approach requires small amount of data, mem-
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ory; and computation per model, this method is
often not suitable since we have to frequently re-
place models which is very costly. The challenge
is to find. a trade-off between these two extreme
approaches. This can be seen as multidimensional
optimization: find an optimal collection of small
probabilistic models that represent a system in
different contexts (situations) accurately and ef-

ficiently.

There are several important points to mention.
First, each probabilistic model from the collection
captures the relationships in the domain that are
relevant in the corresponding context. Second, we
want this model to be robust to noise: smail fluc-
tuations in the data do not mean the change in
the context. Thus, the difference between two con-
texts (and the difference between the correspond-
ing models) should be significant. Third, robust-
ness of the context (which is related to the per-
mitted level of noise) and the level of difference
between contexts is domain dependant and closely
tied to the cost of switching between the contex-
tual models.

Since the collection of contexts may not be
known a priori, we have to find an optimal set of
contexts improving accuracy and efficiency. Two
properties of the set of contexts are accounted for
during optimization: (a) context stability and (b)
a rate of change of contexts. Consequently, we
search for a set of contexts by minimizing the er-
ror representing how well each context from the set
agrees with associated data and how many context
changes are present. The search space is a collec-
tion of all possible sets of contexts. The formal

constraints on the search are presented next.

Let D represent a set of observed data. Nat-

urally we assume that the data set is ordered:
D = {d;,dy,...,dn}, where each d; is a vector of
observations recorded at the ith time step (7 < m)
for all observable variables of the system. Given
recent observations d; for some 1 < ¢ < m, we re-
fer to the successive data vector using the following
notation: s{d;) = djy1-

Consider a set of contexts H = {C, ..., Cr } from

the search space. Fach context from H represents
invariant behavior in a possibly non-continuous
subset of data. Therefore, H corresponds to some
decomposition of a data stream. There are many
possible decompositions of D into & mutually ex-
clusive subsets, which we denote as p(D). Con-
sider an element p; € p(D} that decomposes D
into Dy,..., Dy, where each D; corresponds to
observations of the stable behavior described by
a context C;. Note that each D; consists of data
vectors that may not form a continuous time range
of observations.
Ezample. Consider first six time steps (m = 6) and
assume we are looking for two contexts (k = 2).
Then p; = {Dy = {d1,dp, d¢}, Do = {ds,ds5,ds}}
and po = {Dy = {dy,ds,d3}, Dy = {d4,ds,de}}
are possible decompositions of ID. Note that de-
composition p1. is not contiguous.

We now define two error scores associated with

data decomposition p;:

error(pi) = Prxep;[Ci{x) = false],
errory(p;} =

Pryep;[Ci(s(x)) = folse | C;(x) = true],

where C;(x) is an instantiation of context C; on a
data vector X. Pryep; indicates that the probabil-
ity is taken over the instance distribution D;. In-
formally, score error;(p;) indicates the error rate
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we expect when applying C; to instances drawn
from the probability distribution ;. It captures
how much context C; disagrees with data set D;
from data decomposition p;. Given a successful
application of C; to an instance, score errory(p;)
indicates the expected error rate when applying C;
to the next instance. Note that when error}(p;) is
minimal, error(p;) denotes the amount of insta-
bility in the system’s behavior described by con-
text C; and sampled with data D;. By summing
these two scores across p; we obtain an error score

for the data decomposition given the context par-

tition:
%
error{p;) = [errori(p;) + errory (p;)].
=1
Ezample. Continuing the earlier example, as-

sume the first context logically holds only on
the first three data points and the second con-
text holds only on the last three data points.
Then error{p1) = 1.17, since errori(p) = 0.33,
errorhy(p1) = 0.33, errorf(p1) = 0.5, errorf(p;) =
0. Similarly error{pz) = 0.

Minimizing error(p;) across all data decompo-
sitions yields a score Evrrorp(H) for a context set
H given a data stream D

Errorp(H) = pire%(% }[ermr(pi)].
For the example above Errorp = 0. Note that the
problem of estimating the error score of H is essen-
tially the problem of clustering the data according
to some stable contiguous patterns.

Minimizing Errorp(H) over all possible sets of
contexts gives us an optimal collection of contexts
that represents the stable invariant behavior (with
the smallest number of context changes) of the ob-
served system: ming[Frrorp(H)].

Recall that each element of H (a context C) cor-
responds to some model AM: there is a connection
between M and C, assuming there is an association
(a link in a Bayesian network) between each exoge-
nous variable and endogenous variables. There-
fore, we look at context C as a condition that con-
strains the set of all possible models (structurally
and parametrically).

Ultimately, we search for a context partition
that results in probabilistic models that most ac-
curately represent the data. Ideally, these models
should be as small as possible to reduce the cost of
inference over them. Therefore, while minimizing
Errorp(H), we want to maximize the probability
for each model M, constrained by contexts C € H:

arg max[Pr{M,{ D)] x
arg max[Pr(M.)Pr(D | M.)].

The prior probability distribution Pr(M.)} reflects
our belief before seeing any data that the model
M, imposed by the comtext C is correct. This
search for the best contextual model fits the mini-

mum description length principle:
arg min[— log Pr{M,) — log Pr(D | M,)],

where the first log corresponds to the number of
bits to describe the contextually constrained model
and the second log corresponds to the number of
bits to describe the data in terms of the model.
To ensure that the contextual models are par-
simonious we minimize the in-degree of possible
models (minimizing the fan-in/fan-out problem;).
However, even with structural restrictions find-
ing the best graphical model is NP—completefgzl.
If contexts do not constrain corresponding mod-
els, then the entire optimization problem de-
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scribed above can be reduced to a traditional struc-
ture search and parameter estimation for a single
model.

In the next section we provide the tools for
building models and for performing parameter

learning and inference on the specified models.

4 Generalized Loopy Logic

Generalized Loopy Logic (GLL) is a logic-based
probabilistic reasoning language that supports our
context-based architecture. In section 4.1 we give
a description of the language and in section 4.2 we

present the inference and learning components of
GLL.

4.1 GLL: Language Description

GLL is based on earlier work by P-ooie[gI,
Haddawy[‘l}, Getoor et a.l.[lgl, and Kersting and
DeRaedt!!3. GLL is an extension of the language
developed by Pless et al[?3l, GLL is a first-order
logic-based Turing-complete stochastic modeling
language that improves expressive and reasoning
power by combining deterministic and probabilis-
tic approaches. Note that the expressive power of
traditional Bayesian networks is constrained to fi-
nite domeains as in the propositional logic. GLL
Jhandles this representational shortcoming through
variables capturing general classes of events and
relationships. This first-order language combines
Horn-clause logic with Bayesian networks in order
to represent potentially infinite classes of stochas-
tic relationships such as Markov processes.

A knowledge base constructed using GLL is a
set of Prolog-like rules annotated with probabilis-
tic distributicns describing the conditional depen-

dences among random variables. The domain of
terms is specified using set notation: head <- {0,
1} indicates that head is either O or 1. A GLL sen-
tence is of the form

head|bodyy, ..

.s bodyk = [Pl, LR Pl]1

where body;, 0 < i < k, are the predicates
that represent corresponding random variables on
which a variable head is conditionally dependent.
Facts (rules when k = O} are used to represent the
Note that the size [ of the condi-
tional probability table is equal to arify(head) x

observations.

1%, arity(body;), where arity(x) is the number of
states of x (2.for head). The probabilities are listed
for each state of head and body;, 0 < i < k. For in-
stance, if head is a binary term defined above and
body is defined over {0,1,2}, then a conditional
probability distribution Pr(headlbody) is defined
by the clause

head|body=[[.5,.5],[.4,.6]1,(.1,.9]].

In GLL, terms can be full predicates with strue-
ture and contain Prolog style variables. For in-
stance, the sentence head(N) = [0.5,0.8] says
that head is universally equally probable to take
In case when there are
multiple rules with unifiable heads, GLL uses the
product distribufion as a combining rule that sim-
ply takes the product .of the corresponding con-
ditional probability tables. For instance, if we
have two sentences, head = [0.1, 0.9] and head
= [0.4, 0.6], then the resulting probability of
head will be [0.07, 0.93] obtained by normaliz-
dng [0.1%0.4, 0.9%0.8]1. The product distribu-
tion combining rule allows GLL to handle rules and

facts in the same way, since a fact can be viewed

on either of two values.

as being annotated with a distribution where the
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probability of one state is equal to 1 while the prob-
ability of all other states is equal to 0. This com-
bining rule is handled naturally during inference
in GLL.

4.2 GLL: Inference and Learning

The following GLL program defines 2 hidden
Markov model (HMM) with four observable time
steps:

state <- {true, falsel}

emit <— {hi, low}

state(s(N)}) |state(W)=[[.9,.1]1,[.01,.99]]
emit (M) | state () =Emit

emit(0) = hi
enit(1) = hi
emit(2) = low
emit(3) = low

In this example, at any time step N the system can
be in one of two states, true or false, which is
represented by the predicate state(l). The sys-
tem can start with either one and at each time
step either stay in the same state or transition to
the other state. Note that if the system is in the
state true, then there is a 90% chance that the sys-
tem will stay in that state at the next time step;
however, if the system is in the state false, there
is only a 1% chance the system will move to the
state true. In both states the system can output
either hi or low, which is represented by emit (N).
Note how the recursive rule of GLL captures the
Markov process between states of the HMM.

The conditional probability of the system’s out-
put given a hidden state is denoted with capi-
talized “Emit” indicating that this is a learnable
distribution that will be estimated. The data for
learning is obtained from GLL rules and facts (ob-
gervations). In our example four facts are added

when the variable N is bound by the first four time
steps (here integers are a shorthand for succes-
sors of zero, e.g., 2=s(s(0))). Even though the
variable emit ig completely determined at each
of the four time steps, in general there could
be a learnable distribution with no direct evi-
dence. GLL uses an algorithm based on Expecta-
tion Maximization?4 for inferring probability dis-
tributions and estimating the adjustable parame-
ters.

Generalized Loopy Logic uses the message-
passing inference algorithm known as loopy belief
propagation[ml. As opposed to its predecessor[23],
GLL can also use other iterative inferencing
schemes including generalized belief propagation
and Markov chain Monte-Carlo.

Similar to [13] GLL constructs an SLD tree from
the original program, but then maps the tree to a
Markov random fleld as opposed to mapping it to

a Bayesian network29],

Mapping into a Markov
field handles the product distributions arising from
goals that unify with multiple heads: if more than
one rule unifies with the rule head, then the vari-
able node {corresponding to a ground instance of
the head) is connected to more than one cluster
node (corresponding to a probability distribution
of each rule), which results in a product distri-
bution. One feature of GLL is its control of the
depth of the unfolding of recursive rules when map-
ping mto a Markov random field. Figure 1 demon-
strates how the GLL program specifying an HMM
presented earlier is converted into a Markov field
(factor graph). Here each ground instance of a
GLL term corresponds to a variable node in the
Markov field (ellipse), and each GLL rule with a
probability distribution attached to it corresponds
to a cluster node (rectangle).
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During loopy belief propagation, nodes of a
Markov field exchange messages that are initially
set randomly. On update, 2 message from 2 clus-
ter node C to a variable node V' (a message B4 in
figure 1) is the product of the conditional probabil-
ity table (called a local potential) at C and all the
messages to C except the message from V. In the
other direction, the message from a variable node
V to a cluster node C (a message E» in figure 1)
is the normalized product of all the messages to V'
except the message from €. This process, iterating
until convergence, has been found to be effective
for stochastic inferencel®6! and when applied to an
acyclic graph is proved to converge to an optimal
solution{2H,

A major feature of GLL is its natural sup-
port for parameter learning by the assignment
of learnable distributions to rules of a GLI pro-
gram. These parameters are estimated using a
variant of the Expectation Maximization (EM)
algorithm[24] implemented through the message
passing of the loopy belief propagation algorithr.
EM estimates learning parameters iteratively, al-
ternating between an expectation (E) step and a
maximization (M) step. In the E step, the distri-

., £y { : g
‘ % i <
L3 ." - ,1"'. .
wearnable - - 0
Ep—— node ““"“‘""—---»----...-::‘: observations
M-——-—h-

Fig.1. A Markov random field produced by unrolling the GLL program defining a hidden Markov model.

bution for the hidder variables is based on their
known value and the current estimate of the pa-
rameters is found. In the M step, these paraime-
ters are re-estimated. Assuming the distribution
estimated in the E step is correct, each EM iter-
ation increases the probability of reaching maxi-
mum likelihood24.

More specifically, GLL utilizes the EM algo-
rithm by adding a special kind of node, a learn-
able node, to a Markov random field {the triangu-
lar node in figure 1). Each instance of the clus-
ter node that.is to be fitted is connected to the
learnable node. By inferencing over the cluster
and variable nodes of a Markov field (using loopy
belief propagation) GLL computes the messages
for the learnable nodes {a message M in figure 1).
Applying the propagation algorithm until conver-
gence is equivalent to the E step of the EM algo-
rithm, since it produces an approximation of the
expected values. The averaging over all the clus-
ter nodes connected to the learnable node yields
& maximum likelibood estimate of the parameters
in a learnable node, which is equivalent to the M
step of EM. Therefore, inferencing over the vari-
able and cluster nodes followed by updating the
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learnable nodes and iterating this process is equiv-
alent to the full EM algorithm.

5 The Detection of Context Transitions

In this section we analyze the model failure
heuristie and introduce an approximate heuristic-

based algorithm for context partitioning.

5.1 Failure-Driven Model Revision

Since contexts correspond to invariant behavior
of a system over periods of time, modeling context
vields a focused representation of a specific opera-
tional mode of the system. In this section we ex-
plore the close relationship between context change
and model failure, i.e., & new situation when a
model no longer fits recent data. A model cor-
responding to an active context is less robust to
context changes than the full model of the sys-
tem. During a context transition event, when the
observed data undergoes a significant qualitative
or quantitative change, the current model fails.
Thus, we consider model failure to be an indica-
tion of a context transition event. We argue that
this failure-driven approach is suitable for switch-
ing between contextual models.

Our approach to the probabilistic modeling of
changing contexts is based on ideas from develop-
mental human learning[zl. Piaget suggested that
when an unfemiliar situation iz presented to a
child, she tries to fit it into her current understand-
ing of the world. When this fails, the normal child
is able to form new cognitive structures to address
the situation. This corresponds to two forms of
21,

learning recognized by Piaget assirnilation and

accommodation. We argue that probabilistic in-
ference systems can benefit greatly by emulating

these mechanisms.

When new data are available, we check whether
the current model fits the dataset well. If it does
{i.e., if any changes in the data are not severe),
the data are incorporated into the model by up-
dating its probability distribution (model parame-
ters). Otherwise, if the model fails to fit the data,
we assume that the system is operating in a new
context. We save the current model as it is no
longer relevant and choose a new version that ac-
counts for the new data. Here learning by assimi-
lation happens when the model is consistent with
new data and it is fine-tuned by assimilating the
dataset. Learning by accommodation is when the
model is inconsistent with new data, and, in order
to account for the dataset, we have to reorganize
our model.

Our failure-driven context-switching approach
addresses two related and common problems in
machine learning: the problems of over-fitting
and over-generalization. When single models are
learned on a data set that is not diverse, mod-
els tend to become too specific and are said to
over-fit and are unable to generalize and account
for slightly varying datasets. The converse prob-
lem of over-generalization is when a very general
model ig learned from well distributed and possi-
bly sparse data in the learning stage and, therefore,
performs badly on all types of data in the opera-
tional stage. When used in probabilistic systems,
the mechanisms of assimilation and accommoda-
tion along with the notion of context and context

change, helps minimize these problems.
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Fig.2. (left) The diagram: representing a simplified pump system. (right) The time series of the pressure generated

by the pump (OutPr) and its smoothed and discretized versions.

5.2 An Example of Context-Revision

Identification of model failure is crucial in con-
text sensitive modeling. Assuining a continuous
stream of data, the notion of failure represents
the situation when new data are inconsistent with
the current model. Essentially, model failure can
be identified by estimating the likelihood of the
data given the current model. When this Jikeli-
hood is below a certain threshold, then the model
fails. Ewven though the models of the prohabilis-
tic system described in this paper are specified
by the first-order stochastic language — General-
ized Loopy Logic (see section 4), the notion of fail-
ure can be extended to any probabilistic graphical
model specifying a full joint probability distribu-
tion (see section 3 definition 3.1).

To illustrate our fallure detection method we
consider temporal data obtained from multiple
sensors installed on the mechanical pumyp system
schematically depicted in fizure 2(left).

A water pump draws liquid from a reservoir
through a pipe (pipel) and gjects the liguid into
another pipe (pipe4). The pump is driven by an
electrical motor. The liquid, containing contami-
nants is cleared by a filter and then deposited back
into the reservoir. The flow control modulates the

liquid flow.

In order to diagnose the system, we install a
number of sensors that detect current pressure,
flow, the emission state of the liquid at different
locations, as well as indicating parameters such as
the rotation rate of the pump and vibration near
the motor. One important task is to detect when
the filter gets clogged leading to possible cavita-
tion in the gystem. In order to perform such di-
agnostic tasks, the knowledge about the system is
transformed into a stochastic model using the GLL
tool. I

The sensory data consists of a time series of
three parameters: pressure coming into the pump
(InPr), pressure generated by the pump (OutPr),
and voltage at the motor driving the pump (Volt).
In order to estimate the behavior of the pump sys-
tem depending on how clogged the filter is, we
control the valve regulating the amount of fuid
coming into the pump (as opposed to literally con-
taminating the system). During the experiment
the pump system starts normal operation with the
valve fully open. As the time passes a certain point
(around the 53d time step), we partially close the
valve to limit the flow of the fluid coming into the
pump. A series of 100 data steps is recorded during

the experiment. Each signal is then smoothed
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Fig.3. A Markov random field produced by unrolling the GLI, program defining a pump system. The round nodes

represent. random. variables, the rectangular nodes represent CPTs, and the triangular node represents learmable

distribution. Note that for simplicity we omitted showing the evidence in the diagram.

using a sliding window and discretized. Fig-
ure 2(right) illustrates the time series of one of the
parameters (OutPr) of the pump systerm.

We selected 35 time steps to train a stochas-
tic model, each time slice of which contains 2 hid-
den variables-(resistance at the pump, Resist, and
torque of the motor, Torgue) and 3 observable vari-
ables (InPr; OutPr, Voli). The following is an ex-
ample of a pump model specified in GLL.

torque (N) [volt (N)=[1]

volt (N+1) |resist (W)=[2]

resist (N) |torque (N} ,in_pres(N)=Resist
in_pres(N) |out_pres(¥)=[3]
out_pres(N+1i) | torque (N) ,in_pres(N)=[4]
volt (0r=Laow

in_pres{0)=hi

out_pres{0)=low

Note that for simplicity we replaced the condi-
tional probability tables with placeholders, e.g.,
table [1]. We assume that we are given the ob-
servations of k& 4 1 time steps (35 in this case).
In figure 3 we show a Markov network built by
unrolling the GLL program. Note that unrolling

is done through knowledge base model construc-
tion: we start with the current observations (at
time & + 1) and recursively apply. the clauses of
the GLL program until the last observation of the

window, which is assumed to be at time 0.

To select an appropriate size of training data
we performed a leave-one-out cross-validation for
each model trained on the first K time steps of
the training data (here K takes values between 5
and 45 since we know that the first 45 time steps
came from the same stationary distribution). Fig-
ure 4(left) shows that the average prediction error
decreases as the size of the training dataset in-

creases and becomes minimal at around 35.

Recall that GLL employs the EM learn-
ing algorithm[24] implemented wusing loopy belief
propagation[zl] to learn model parameters (see
section 4.2). Figure 4(right) demonstrates the de-
pendency of the iterations of the learning algo-
rithm on the training dataset. The fact that learn-
ing the model from the training dataset with 35
time steps requires a considerably smaller number
of iterations is another indicator of the appropriate
size of the training dataset.
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Fig.4. A leave-one-out cross-validation analysis across models trained on data sets with gradually increasing size.

(left} Dependence between a model prediction error and the size of the training data. The error is averaged across

the range of predicted parameters as well as across iterations of the cross-validation. Notice that the exrror decreases

as the window gets larger than 15, and the error is minimal at around 35. (right) The number of iterations a rl_:todel

takes on average to converge versus the size of training data. Notice the amount of iterations stabilized to a

minimum when the size of the training data is greater thamn 35.

5.3 Detecting Model Failure

The problem of identifying model failure is
a special case of a statistical problem of de-
tecting the distribution change from a stream
of observations®7l, There are a number of ap-
proaches to this problem, e.g., in [28] the authors
propose a Bayesian formulation of change detec-
tion through hidden Markov models. In [29] the
authors also follow a Bayesian approach and use
Gibbs sampling to detect the changes in the dis-
Finally, in [30] the authors used an

EM-based algorithm to learn a Gaussian mixture

tribution.

model, which is related to our approach. In this
paper we provide a method that fits naturally into
the iferative framework of our context-sensitive
probabilistic modeling.
t0 a classifier ensemble for explicit change detec-
tion (see [31] for a detailed review). Recall that

our failure detection algorithm is proposed in the

Owur approach is related

framework of logic-based probabilistic reasoning as
a way of detecting context changes and trigger-

ing model switching or adaptation. Table 1 out-
lines our failure detection algorithm. The idea
of the algorithm is to monitor a selected subset
of model parameters (triggers) and signal a pos-
sible model failure when the parameters of the
previously trained model are considerably differ-
ent than these learned with new data. Recall that
GLL model parameters are the CPTs of the GLL
clauses. Note that the function learn_porem (in
step 5.3) estimates a single parameter given new
data and the model, with the rest of the parame-
ters learned from the training data. This is differ-
ent from the function train_model (in step 1) that
estimates all model parameters given data.

We now go through each step of the meta-
algorithm of the failure detection in Table 1. In
step 1 the model specified by a GLL program is
trained on the initial data (see section 4.2 for de-
tails). Then, in step 2 and 3 we determine the opti-
mal window and threshold parameters for the fail-
ure detection to capture the context change (this
step is explained in section 5.4).
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LA I A

6. if (not failure) then go to 4

model M « train.model(gll program, training data)
window_params « find_window(training data, model M)

threshold « find_threshold(training data, model M, window_params)
current_data « slide.window(window_params)

for each (trigger_params of model M)

5.1. current_cpt « get_cpt{trigger_param)

5.2. model M’ « make.learnable{model M, trigger_param)

5.3. new._cpt « learn.param{model M’, current.data)

5.4. difference « frobenius_norm(current_cpt, new_cpt)

5.5. if {difference > threshold} then failure «— true

Table 1: A high-level description of the failure detection algorithm. The algorithm is initialized
in steps 1, 2, 3 and proceeds by iteratively selecting a data window (in step 4) and checking for
model failure in the specified window (in step 5). If no break-down is detected, the algorithm
slides the data window further along the data stream. Note that in steps 1 and 5.3 the algorithm
employs the EM-based learning of GLL (see section 4.2) and also uses optimization techniques for

selecting appropriate window and threshold parameters (see section 5.4).

In step 4 the algorithm reads the input data.
In step 5 we traverse all the trigger parameters of
our model in order to detect the context change.
Specifically, in step 5.1 we store the current CPT
of a trigger parameter according to our trained
model M. In step 5.2 the algorithm makes a tempo-
rary model M’ by replacing the CPT of the trigger
parameter with a learnable distribution. In step
5.3 we apply the EM-based learning of GLL (see
section 4.2} to estimate the learnable distribution
based on the new data. In step 5.4 the Frobe-
nius norm is used to compare the original distri-
bution stored in current_cpt and the distribution
estimated from the new data (new_cpt). The al-

gorithm indicates a context change if at least one

trigger parameter shows a considerable deviation
from the original distribution. Note that not only
is the detection algorithm in Table 1 controlled by
the size of the data window and the size of the win-
dow shift, but it is also regulated by the threshold
indicating model failure.

In general the problem of finding the appropri-
ate window and threshold parameters can be seen
as a two-dimensional error minimization problerm.
Given window /threshold parameters ©, consider
errory = PrFD{M,©, Dyosait) = true], a Type I
error representing the rate with which our faflure
detector F I signals the failure of model M on the
data Dpgrair-
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Fig.5. Performance of the failure detector for a single model parameter {Resist) across (left} different window

overlaps given a window of size 17, and (right) different window sizes given a window overlap of 12 data points.

The X axis corresponds to time, the Y axis corresponds to the size of (left) the window overlap and (right) the

sliding window, and the Z axis is the difference between the expected and the predicted values of the model

parameter (Resist in this case} measured by the Frobenius norm.

Note that since Dhpofey is the data from the
same stationary distribution as the training data
for the model M, no failure is expected. errorg =
PriFD(M,8,Dgoy) = falsel is a Type II error
that shows how frequently F'D misses model fail-
ure. Ultimately, we would like to find parameters
@ that would minimize errory; and errors.

Minimizing error; is relatively easy: we parti-
tion the training dataset into two subsets, use the
first subset to train the model, and employ the sec-
ond subset to determine window parameters such
that the failure detector finds no failure on the sec-
ond subset. Note that the minimization of errory
returns a subset of possible window/threshold pa-
rameters. Given the third subset of the training
data on which the detector is expected to signal fail-
ure, we can perform a similar minimization routine
to further constrain the parameter set.

Figure 5(left) shows the performance of the fail-
ure detector (trained on data from the pump sys-
tem) for a model parameter corresponding to re-

sistance of the pump (Resist). The detection algo-

rithm slides a window of 17 data points through
the data stream starting from the 35th time step
(since we used the first 35 data points of the stream
to train the model). The data streamn has a break-
down at around time step 54, when a valve of the
pump system is closed causing less flow coming
into the pump and increasing the pump’s resis-
tance. Figure 5(left) shows that choosing an over-
lap between consecutive windows affects the choice
of the threshold: selecting 0.3 as a threshold in
case of overlap 12 accurately captures the break-
down, however the same threshold does not work
for overlap 10. 4

Figure 5(right) shows how the failure detector
performance changes depending on the sliding win-
dow size, assuming the consecutive windows over-
lap by 12 points. It can be seen that the smaller
the window, the more prone to data noise the fail-
ure detection becomes. On the other hand, larger
windows produce smoocther, more stretched out re-

sults.
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Fig.6. Average variance (left) and the corresponding error bars (right) of subsets of the training data of the pump

model plotted for various subset size (between 2 and 25). T'wo plots are shown for random variables Volt (voltage

at the motor of the pump system) and OutPr (pressure coming out of the pump). We would like to select a window

big enough for the changes in variance to be below the level depicted in {right) by the horizontal lines for each

variable.

We see from figure 5 that larger windows pro-
duce a failure detection lag, when model failure is
identified long after the break-down has oecurred.
Additionally, larger windows demand more compu-
tational power. On the other hand, smaller win-
dows result in a higher likelihood of a false positive

error.

5.4 Using Variance to Optimize Win-
dow/Threshold Parameters

In general, without an appropriate data set,
minimizing Type II error (errors) is a challenging
problem. The problem becomes even more difficult
if the difference between the distributions which
create model failure is small. A possible way of
selecting the window /threshold parameters with-
out a training set for failure detection is to employ
data variance.

Intuitively, we would like to know the size of a
representative subset of the training data, a data

window, variance of which is close to the true vari-

ance of the training data. A steep change in vari-
ance of such a data window would be a good indi-
cator that the data came from a new distribution.
Consider a window with size K and draw N sub-
sets of data by randomly sliding the window along
the training dataset. Computing an average vari-
ance over N data subsets for a large enough NV
produces an estimate of our confidence that a win-
dow of K elements drawn from the training dataset
captures the underlying dependencies observed in
the entire training dataset.

Figure 6(left) shows the average variance of data
windows with increasing size randomly selected
from the training dataset. Figure 6(right) demon-
strates that at some moment error bars of the vari-
ance monotonically decrease as the window size in-
creages: the more data we take, the less changes in
the data variation we get. Thus, we set the window
size to 12 or larger (25 is the optimal). Automati-
cally, this can be done by selecting the window as
soon as the error bars drop below a certain level,

as the window size Increases.
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Fig.7. Model failure detection for the pump model. Each horizontal line corresponds to a failure threshold: once a
comresponding distribution change goes above this threshold, the failure detector signals & model break-down. The

grid corresponds to window shifts.

Once the window size is set, the failure thresh-
old can be found by computing an average differ-
ence (e.g., & Frobenius norm) between the current
value of a model parameter and its estimate com-
puted from the window of the training data. Es-
sentially, we can execute the failure detection algo-
rithm using the window of training data and em-
ploy the computed difference as a failure threshold.

5.5 Application of Failure Detection

Figure 7 illustrates the performance of the fail-
ure detector on the sensory data for the pump
model plotted for three model parameters: mo-
tor voltage, Volt, pump resistance, Resisf, and
motor torque, Torgue. Note that in this exam-
ple each parameter has its own failure threshold,
which brings more flexibility into the detection
process, since some parameters change less grad-
wally (such as Volf), while other deviate consider-
ably (like Torgue). The thresholds were automati-
cally identified using the method described above.

Recall that the actual model break-down hap-

pens around time step 54, when the valve of the
pump system is partially closed. By monitoring
the parameter Resist the failure can be identified
at step 59 after 4 window shifts, whereas by mon-
itoring parameters Volt and Torgue the failure is
identified much later, at about step 69.

When the model is large, failure detection in
general can be very expensive. We specify a small
subset of frigger parameters, whose changes are
seen as most important by the domain experts and
indicative of mode! failure. Instead of checking for
failure in the entire model, only this small set of
trigger parameters is monitored. Full-fledged fail-
ure detection is engaged once a change in a trigger
parameter is discovered. Since different parame-
ters give different detecting performance, it might
be useful to employ a combination of these. Two-
layered failure detection can be used, for example,
when a parameter that is sensitive to data noise
but useful in detecting early failure (Resist in fig-
ure 7) can trigger an alert mode, in which case a
more stable parameter (such as Voltage) is ana-
lyzed to confirm the detected model break-down.
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Fig.8. (left) The flow chart of the failure-driven architecture incorporating two discovery modes, assimilation and

accommodation. (right) A diagram of the relationship between three levels of representation and control. At the

top level resides a knowledge base represented as a set of Horn clauses. Given input data and a query, the relevant

components of the knowledge base are instantiated resulting in a specific graphical model (a Markov random field)

which is a part of the bottom level. The intermediate level contains a database of graphical models from the bottom

level, each of which captures a specific contextual information encountered so far. Each specific graphical model

{(an entry in the database depicted with a black node in the figure) is connected with at least one other model

through a confext transition that has been encountered previously.

6 Modeling Dynamic Data: Example

In this section we show how our method for the
detection of context changes supports a framework
for context-sensitive probabilistic modeling in the

analysis of dynamical data collected over time.

6.1 A Context-Switching Architecture

Probabilistic modeling systems that dynami-
cally represent frequently changing data are im-
portant for monitoring complex tasks. Dynamical
systerns employing distributed sensing technology
also introduce additional constraints on the run-
ning time and memeory of the modeling system.
The most suitable systems in these cases, we be-
leve, are those that are able to evclve to handle
rapidly changing pieces of information.

Following a failure-driven approach described in
section 5.1, a possible architecture of a context-

sensitive probabilistic modeling system is de-
scribed by the flow chart diagram in figure 8(left).
Context switching mechanisms, which are among
the main components of the system, employ two
forms of learning within the architecture — assim-
ilation and accommodation. When new data are
available, the system checks whether the current
model fits the dataset well. If it does, the data are
incorporated into the model by updating its prob-
ability distributions. Otherwise, if the model still
fails to fit the data, the system saves the current
model and searches for a new version of the model
that will account for the new data.

The operation of the system, see figure 8(left),
when the condition “Model fit?

sponds to learning by assimilation: the model is

holds, corre-

consistent with the new data and it is fine-tuned
by assimilating the dataset. Conversely, when this
condition does not hold, the system employs learn-
ing by accommodation: the model is inconsistent
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with new data, and in order to account for the
dataset, we have to reorganize the model.

Thus a key component of our context-sensitive
modeling system is an ensernble of contextual mod-
els, figure 8(right). Intercomnected contextual
models managed by domain knowledge, the top
layer, correspond to vertices and edges of the struc-
ture of the ensemble. Graphical models, the ver-
tices of the ensemble’s structure, constitute the
lowest layer. The system incrementally populates
the ensemble of models by applying our failure-
driven methodology.

6.2 Context Switching: Pump Example

Our context change detection algorithm is im-
plemented in Schemel32]. The prototype is applied
to the data obtained from the mechanical pump
system shown in figure 2. In particular, two types
of tests were performed: Test A, a test on detect-
ing a transition from normal behavior to a context
when the filter is clogged, and Test B, a test on
choosing an appropriate model in the ensemble of
models once the context change is detected.

In Test A an active model was trained on the
data from the mechanical pump system: operat-
ing normally. The normal behavior of the pump
system continued until the 48th time step when
the flow valve (see figure 2} was partially closed
to simulate a clogged filter, The system was sub-
sequently halted after a total of 100 data steps.
During this time the active model was continu-
ously checked for failure. The results for the three
model parameters, voltage at the motor, resistance

at the pump, and torque at the motor, are plotted

in figure 9(left).

Failure was detected using a window of 17 time
steps that was sliding 5 steps at a time. As seen
in figure 9(left), the modeling system successtully
identified the context change. Note however that
the context change was captured after the actual
break-down had occurred, at steps 55-60 as op-
posed to the 48th step, due to the choice of con-
servative window parameters from the set of pos-
sible parameters trained earlier. An attempt to
capture the context change sooner by employing
a smaller window (size 15) with a smaller overlap
(10) was not successful (data are not shown): our
failure detection method prematurely, around the
25th time step, signals a context change due to
the high noise level in the data stream. A possi-
bly more robust extension to the context switching
mechanism might be to consider several windows
of different sizes: small windows can be used to
alert the system of a possible context change, while
large windows can then confirm this change.

In Test B we trained 6 distinct models, corre-
sponding to various operational contexts of the
pump system. The contexts consist of normal
operational behavior, behavior under a highly
clogged filter, under a slightly clogged filter, be-
havior when a pump is misaligned, when a shaft
between a motor and the pump is misaligned, and
when one of the gears has a chipped tooth.

‘We then considered the data stream of the pump
system operating normally until the 70th time step
when the flow valve was almost closed (simulating
a highly clogged filter) and reopened again after
the 120th time step. The failure detection method

was invoked for each of the six trained models.
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Fig.9. (left) Failure detection on three model parameters ( Volt, Resist, Torque) in the data stream when the pump

systern initially operates normally, but then breaks down at the 48th time step (when the flow valve is partially

closed). The prediction is performed using a sliding window of 17 points with 12 point overlaps. A vertical line Off

shows an actual system break down, while horizontal lines correspond to failure thresholds for the corresponding

(same style) model paramneters. Using Resist the context change is detected at the 55th step, using Torgue the
change is defected at the 60th step, and using Volt the change is detected at the 65th step. (right) An illustration

of an experiment where the pump system starts operating normally and the valve is partially closed (at the Off

time step), which is then opened back (at the On time step). The figure shows the difference between the true

Voltage parameter and the parameter estimated on the sliding window for various models: a model (Norm) trained

- on data from regular conditions, a model {Clog) corresponding to a partially closed flow valve, and a model { Tooth)

capturing the situation when a gear tooth is chipped.

Figure 9(right) #lustrates the results of failure
detection for & model parameter corresponding to
voltage at the motor { Volf) for three models Norm,
Clog, and Tooth, corresponding to contexts of nor-
mal operational behavior, behavior when a flow
valve is partially closed, and Behavior when a gear
tooth is chipped. Note that the model Norm shows
the smallest difference between predicted and true
model parameters before time Off (when the flow
valve is turned), which then peeks after the turn,
and drops down after time On (when the valve is
reopened). On the other hand, the model Clog
presents almost the opposite behavior: it shows
a very large parameter difference before the turn
of the valve, which steeply reduces once the valve
is partially closed, and increases back after the

valve is reopened. Note that other models do not
show such distinet behavior, for example the model
Tooth in figure 9(right) exhibits. a constant large
(above the corresponding threshold) difference be-

tween true and predicted parameters.

Since the model Norm has the smallest error
at the beginning of the data stream, the context-
sensitive modeling system employing our context
change detection method selects this model as ini-
tially active. As soon as the first context change
(Off in figure 9{right)) is identified, the system
then switches the active model to Clog, since it
has the smallest error among the six models. Con-
sequently, the modeling system returns the ac-
tive model back to Norm after the second context
change is detected.
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7 Conclusions and Future Directions

In this paper we considered a logic-based prob-
abilistic modeling approach called GLL. While the
probabilistic component of GLL handles noise and
uncertainty, the logic component lets the model de-
signer compactly represent the underlying knowl-
edge through a set of first-order rules. In this paper
we characterize the notion of context and propose
a GLL-based framework that uses model failure
to represent a complex real-time diagnostic prob-
lem: as a set of simpler context-gpecific knowledge-
focused reasoning tasks. The framework uses a
failure-driven approach of switching between min-
imal models corresponding to contexts, motivated
by research in developmental psychology[zl.

There are a number of important advantages
of using the context-based failure-driven modeling
approach to real-time diagnostic reasoning. First,
there is no need to reconstruct a complete distribu-
tion of all possible data, thus less data is needed
for training a diagnostic meodel. Usually, during
probabilistic reasoning, systern dynamics are as-
sumed to be stationary and invariant over the en-
tire training data set. While reasoning about a
system whose dynamics change according to states
of the external environment and where little a pri-
ori knowledge is given, every possible aspect of the
world must be explicitly represented for the train-
ing data and learning algorithm to capture all hid-
den relationships.

One implication of minimal model context
switching is that when a traditional knowledge
base changes, the learned general model is dis-
carded as no longer true and a new one must be
constructed from scratch. Using our approach, by
splitting the domain into contexts we are able to

construct smaller models with reduced complex-
ity capturing only relevant, currently present-in-
the-data relationships. Such small models assume
stationary behavior and require only s minimum
amount of training data. This fact also helps to
reduce the overfitting problem.

A second advantage of our approach is that non-
stationary behavior is handled by using context
transitions and the swapping of models. The dif-
ferent operational contexts of a system are cap-
tured by different small models representing local
(referring to a context) stationary behavior in the
data. Combining these models together by swap-
ping a currently active model with another model
provides a way to handle global non-stationary be-
havior in the data.

Finally, for the domain expert, there can be
more meaningful diagnoses due to the underlying
logical knowledge base and domain focusing. Since
the contextual models are knowledge-focused (rep-
resenting only relevant information due to KBMC)
and are associated with a subset of the first-order
knowledge base, the analysis of these models and
their contextual differences can be much more
meaningful to a domain expert.

There are a number of directions for future re-
search. Even though it is linked to a probabilistic
model, only deterministic contexi changes are cur-
rently allowed. A major extension would be to al-
low stochastic context transitions that will poten-
tially increase the reasoning power of our frame-
work. Other research directions include extending
the method for detecting model failure, e.g., by us-
ing several sliding windows of various sizes to in-
creage the sensitivity of the method while keeping
the rate of faise-positive error low.
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Interested readers can find the GLL software
supporting failure-driven context-modeling at
http://www. ce.unm. edu/"sanik/Support/gll.tgz.
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